

Accreditation

The Deutsche Akkreditierungsstelle attests with this **Accreditation Certificate** that the testing laboratory

ProfEC Ventus GmbH Marie-Curie-Straße 1, 26129 Oldenburg

meets the requirements according to DIN EN ISO/IEC 17025:2018 for the conformity assessment activities listed in the annex to this certificate. This includes additional existing legal and normative requirements for the testing laboratory, including those in relevant sectoral schemes, provided they are explicitly confirmed in the annex to this certificate.

The management system requirements of DIN EN ISO/IEC 17025 are written in the language relevant to the operations of testing laboratories and confirm generally with the principles of DIN EN ISO 9001.

This accreditation was issued in accordance with Art. 5 Para. 1 Sentence 2 of Regulation (EC) 765/2008, after an accreditation procedure was carried out in compliance with the minimum requirements of DIN EN ISO/IEC 17011 and on the basis of a review and decision of the appointed accreditation committees.

This accreditation certificate only applies in connection with the notices of 30.06.2023 with accreditation number D-PL-19142-01.

It consists of this cover sheet, the reverse side of the cover sheet and the following annex with a total of 5 pages.

Registration number of the accreditation certificate: D-PL-19142-01-00

Berlin, 30.06.2023

B. Sc. Maik Kadraba Head of Technical Unit

The certificate together with the annex reflects the status as indicated by the date of issue. The current status of any given scope of accreditation can be found in the directory of accredited bodies maintained by Deutsche Akkreditierungsstelle GmbH (www.dakks.de).

Deutsche Akkreditierungsstelle GmbH

Office Berlin Spittelmarkt 10 10117 Berlin

Office Frankfurt am Main Europa-Allee 52 60327 Frankfurt am Main Office Braunschweig Bundesallee 100 38116 Braunschweig

The Deutsche Akkreditierungsstelle GmbH (DAkkS) is the entrusted national accreditation body of the Federal Republic of Germany according to § 8 section 1 AkkStelleG in conjunction with § 1 section 1 AkkStelleGBV. DAkkS is designated as the national accreditation authority by Germany according to Art. 4 Para. 4 of Regulation (EC) 765/2008 and clause 4.7 of DIN EN ISO/IEC 17000.

Pursuant to Art. 11 section 2 of Regulation (EC) 765/2008, the accreditation certificate shall be recognised as equivalent by the national authorities within the scope of this Regulation as well as by the WTO member states that have committed themselves in bilateral or multilateral mutual agreements to recognise the certificates of accreditation bodies that are members of ILAC or IAF as equivalent.

DAkkS is a signatory to the multilateral agreements for mutual recognition of the European co-operation for Accreditation (EA), International Accreditation Forum (IAF) and International Laboratory Accreditation Co-operation (ILAC).

The up-to-date state of membership can be retrieved from the following websites:

EA:

www.european-accreditation.org

ILAC: IAF: www.ilac.org

www.iaf.nu

Deutsche Akkreditierungsstelle

Annex to the Accreditation Certificate D-PL-19142-01-00 according to DIN EN ISO/IEC 17025:2018

Valid from: 30.06.2023

Date of issue: 30.06.2023

Holder of accreditation certificate:

ProfEC Ventus GmbH Marie-Curie-Straße 1, 26129 Oldenburg

The testing laboratory meets the requirements of DIN EN ISO/IEC 17025:2018 to carry out the conformity assessment activities listed in this annex. The testing laboratory meets additional legal and normative requirements, if applicable, including those in relevant sectoral schemes, provided that these are explicitly confirmed below.

The management system requirements of DIN EN ISO/IEC 17025 are written in the language relevant to the operations of testing laboratories and confirm generally with the principles of DIN EN ISO 9001.

Tests in the fields:

Measurement of Wind Turbine Power Performance; Wind Resource and Energy Yield Assessment of Wind Turbines and Wind Farms; Installation and Evaluation of Wind Measurements with Anemometers and Remote Sensing Devices (RSD); Site Classification of Wind Turbines; Validation and Classification of Remote Sensing Devices

Within the scope of accreditation marked with *, the testing laboratory is permitted, without being required to inform and obtain prior approval from DAkkS, to use standards or equivalent testing methods listed here with different issue dates.

The testing laboratory maintains a current list of all testing methods within the flexible scope of accreditation.

This certificate annex is only valid together with the written accreditation certificate and reflects the status as indicated by the date of issue. The current status of any given scope of accreditation can be found in the directory of accredited bodies maintained by Deutsche Akkreditierungsstelle GmbH at https://www.dakks.de.

Abbreviations used: see last page

1. Measurement of Wind Turbine Power Performance

IEC 61400-1 Ed.4 *

2019-02 in junction with

Ed. 4.0 / COR1 2019-09 Wind energy generation systems - Part 1:

Design requirements
Correction to the Ed. 4.0

IEC 61400-2 Ed.3 *

2013-12 in junction with

Ed. 3 / COR1 2019-10 Wind turbines - Part 2: Small wind turbines Correction to the Ed. 3

IEC 61400-12 Ed.1 *

2022-09

Wind energy generation systems - Part 12:

Power performance measurements of electricity producing

wind turbines - Overview

IEC 61400-12-1 Ed.2 *

2017-03

Wind turbines - Part 12-1:

Power performance measurements of electricity producing

wind turbines (withdrawn standard)

IEC 61400-12-1 Ed.3 *

2022-09

Wind energy generation systems - Part 12-1:

Power performance measurements of electricity producing

wind turbines

IEC 61400-12-2 Ed.3 *

2022-09

Wind energy generation systems - Part 12-2:

Power performance of electricity producing wind turbines

based on nacelle anemometry

IEC 61400-12-3 Fd.1 *

2022-08

Wind energy generation systems - Part 12-3:

Power performance - Measurement based site calibration

IEC 61400-12-4 Ed.1 *

2020-09

Wind energy generation systems - Part 12-4:

Numerical site calibration for power performance testing of

wind turbines

IEC 61400-12-5 Ed.1 *

2022-08

Wind energy generation systems - Part 12-5:

Power performance - Assessment of obstacles and terrain

IEC 61400-12-6 Ed.1 *

2022-08

Wind energy generation systems - Part 12-6:

Measurement based nacelle transfer function of electricity

producing wind turbines

IEC 61400-50 Ed.1 *

2022-08

Wind energy generation systems - Part 50:

Wind measurement - Overview

Valid from:

30.06.2023 30.06.2023

Date of issue:

Page 2 of 5

IEC 61400-50-1 Ed.1 *

Wind energy generation systems - Part 50-1:

2022-11

Wind measurement - Application of meteorological mast,

nacelle and spinner mounted instruments

IEC 61400-50-2 Ed.1 *

Wind energy generation systems - Part 50-2:

2022-08

Wind measurement - Application of ground-mounted remote

sensing technology

FGW TR 2 Rev.18 *

Determination of Power Performance and Standardised Energy

2023-01

Yields

MEASNET Version 5

2009-12

Power Performance Measurement Procedure

2. Wind Resource and Energy Yield Assessment of Wind Turbines and Wind Farms

FGW TR 6 Rev.11 *

Determination of Wind Potential and Energy Yields

2020-09

MEASNET Version 3

2022-09

Evaluation of Site Specification Wind Conditions

TPI-01

Wind Resource Assessment and Energy Yield Assessment

2022-12

3. Installation and Evaluation of wind measurements with Anemometers and Remote sensing devices (RSD)

IEC 61400-50 Ed.1 *

Wind energy generation systems - Part 50:

2022-08

Wind measurement - Overview

IEC 61400-50-1 Ed.1 *

Wind energy generation systems – Part 50-1:

2022-11

Wind measurement – Application of meteorological mast,

nacelle and spinner mounted instruments

IEC 61400-50-2 Ed.1 *

Wind energy generation systems – Part 50-2:

2022-08

Wind measurement – Application of ground-mounted remote

sensing technology

FGW TR 6 Rev.11 *

Determination of Wind Potential and Energy Yields

2020-09

MEASNET Version 3

Evaluation of Site Specification Wind Conditions

2022-09

Valid from:

30.06.2023

Date of issue:

30.06.2023

Page 3 of 5

TPI-03 Measurement Installation for PPM and EYA

2022-12

IEA expert group study on recommended practices Ground-Based Vertically-Profiling Remote Sensing for Wind Resource Assessment

recommendation 15

2013-01

4. Site Classification of Wind Turbines

IEC 61400-1 Ed. 4 * Wind energy generation systems - Part 1: Design requirements

2019-02

in junction with Ed. 4.0 / COR1 2019-09

Correction to the Ed. 4.0

IEC 61400-2 Ed.3 *

2013-12

in junction with Ed. 3 / COR1 2019-10

Correction to the Ed. 3

TPI-04

2022-12

Site Classification

5. Validation and Classification of Remote Sensing Devices (RSD)

IEC 61400-50 Ed.1 * Wind energy generation systems - Part 50:

2022-08 Wind measurement - Overview

IEC 61400-50-1 Ed.1 * Wind energy generation systems - Part 50-1:

2022-11 Wind measurement - Application of meteorological mast,

nacelle and spinner mounted instruments

Wind turbines - Part 2: Small wind turbines

IEC 61400-50-2 Ed.1 * Wind energy generation systems - Part 50-2:

2022-08 Wind measurement - Application of ground-mounted remote

sensing technology

TPI-09 Remote Sensing Device Classification and

2023-04 Remote Sensing Device Verification

Valid from: 30.06.2023 Date of issue: 30.06.2023

Page 4 of 5

Abbreviations used:

DIN German Institute for Standardization

FGW Federation of German Wind Power and other Renewable Energies

IEC International Electrotechnical Commission

MEASNET International Measuring Network of Wind Energy Institutes

IEA International Energy Agency

TPI in-house Technical Procedure Instruction

PPM Power Performance Measurement and Verification

EYA Energy Yield Assessment RSD Remote Sensing Device

Valid from: Date of issue: 30.06.2023 30.06.2023

Page 5 of 5